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Fluctuations and light scattering in free-standing smectic-C films
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The Goldstone mode of the director fluctuations in free-standing smectic-C liquid crystal films
is studied theoretically. The system considered is three dimensional but of finite thickness. The
response function of the system and the correlation function of the fluctuations are presented in a
compact form. The theory is used to analyze light scattering experiments. It is shown that a two-
dimensional model for very thin films can be obtained from one for a bulk system by minimizing over
q. rather than setting ¢, = 0. This leads to some correction to the effective bend elastic constant

of a film.

PACS number(s): 61.30.Cz

I. INTRODUCTION

In studying the elastic and dynamical properties of lig-
uid crystals, light scattering can be an enormously use-
ful and powerful tool [1]. This is because of the optical
anisotropy and very strong thermal orientational fluctu-
ations associated with liquid crystals. Such techniques
have long been used to investigate bulk systems, but more
recently considerable progress has been made in apply-
ing these methods to bounded liquid crystals such as cells
and films.

A free-standing smectic-C film can be imagined as
a stack of layers, each of which constitutes a two-
dimensional liquid consisting of long molecules. The di-
rector n (the preferred orientation of the molecules ) is
tilted with respect to the layer normal by a polar angle
0. Random thermal deviations of 6 from its average are
small. An azimuthal angle ¢ defines an orientation of
the tilt plane and its fluctuations are of the Goldstone
type. These fluctuations destroy the long-range order in
a two-dimensional system.

This system is attractive from a fundamental point of
view. First, the number of layers can be varied from 2
to several hundred allowing one to study experimentally
the dependence of the physical properties on the thick-
ness. Second, there are well-developed fluctuations of the
director that cause strong light scattering [2].

Free-standing films have been under extensive experi-
mental as well as theoretical study since the 1970s. The
main attention has been focused on chiral smectic-C
films. Apart from molecular ordering they exhibit spon-
taneous polarization. The polarization vector is perpen-
dicular to the tilt plane. In addition to elastic energy
there is also long-range interaction between charges cre-
ated by nonuniform fluctuations. The first measurement
of the polarization, elastic constants, and viscosities was
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carried out by means of light scattering by Rosenblatt et
al. [3]. It was shown that the elastic properties of the film
can be characterized by two constants K° and K&, re-
sponsible for splay and bend deformations, respectively,
and that the long-range interaction effectively gives rise
to a term in the elastic energy linear in ¢. The magnitude
of the two elastic constants and their dependence on the
thickness of the film L, apart from very thin films, can be
estimated as K5°F ~ LK, with K a typical bulk elastic
constant.

The behavior of free-standing smectic-C films in the
vicinity of the phase transition to smectic-A4 liquid crys-
tal has been studied theoretically using the Kosterlitz-
Thouless model by Heinekamp and Pelcovits [4]. These
predictions have been checked by Amador and Per-
shan [5] via light-scattering and ellipsometry studies.
Light scattering related to the azimuthal angle fluctu-
ations have been studied by Lu et al. [6] using a chiral
smectic film thick enough for finite-size effects to be irrel-
evant. Angular dependence in this case is characterized
by four elastic constants By, B, B3, and B;3. These
authors showed that the long-range interaction between
induced charges leads to an effective change in the elastic
coefficient Bj.

A detailed experimental and theoretical study of
nonchiral smectic films has been presented by Sprunt et
al. [7]. The case of small film thickness was discussed in
terms of natural modes of out-of-plane distortions. It is
shown that if the thickness is less than the wavelength
of the light, only the main natural distortion need be
taken into account. In fact, this contribution depends
on the boundary conditions at the interfaces. To the au-
thor’s best knowledge, such a dependence has not yet
been studied.

There have been many recent studies of surface phe-
nomena in free-standing smectic films. An unusual sur-
face stripe state has been observed by Demikhov [8]. This
state is believed to be due to the chiral symmetry break-
ing at the interfaces [9]. The surface tension has been
measured via x-ray scattering from thermal layer undu-
lations by Shindler et al. [10].

In view of these studies, interesting theoretical avenues
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include the following. First, the issue of how the three-
dimensional system, described by the four elastic con-
stants, evolves into a two-dimensional one described only
by two elastic constants. Second, it is instructive to as-
sess the way in which the interfaces affect the correlation
function describing fluctuations of the ¢ director. Third,
one expects that light scattering data will exhibit inter-
esting surface-driven effects.

We note in addition that the correlation function is
connected by the fluctuation-dissipation theorem [11] to
the response function (generalized susceptibility) describ-
ing reaction of the system to external action. Thus
the correlation function is of importance in undertaking
external-field related applications.

The plan of the paper is as follows. In Sec. II the cor-
relation of azimuthal angle fluctuations is described in
terms of the natural modes as well as the response func-
tion. In Sec. III, which is devoted to the light scattering
process, compact expressions for angular and frequency
distributions of scattered light intensity are derived. The
results obtained in this paper are summarized in Sec. IV.

II. CORRELATION FUNCTION

In addition to the c-director fluctuations mentioned
above, there are two other fluctuation modes of the direc-
tor, that play an important role in the enormously strong
light scattering effects typical of liquid crystals. There
are the director deviations from equilibrium caused by
undulations of the layers and the deviations of the po-
lar angle 8. The former has been studied in detail by
Shalaginov and Romanov [12], while the interaction be-
tween the two types has been studied Spector et al. [13].
Here we leave aside both of these types and consider only
the c-director fluctuations, which, being of the Goldstone
type, dominate.

‘We choose a Cartesian coordinate system such that the
smectic-C film of thickness L is confined between the two
outer layers at z = +L/2. The x axis is defined along the
projection of n in the plane of the layers. We recall that
the director is defined by the azimuthal ¢ and polar 6
angles. Assuming # to be fixed and deviations of ¢ from
zero to be small, we arrive at a free energy expression

[14]
F= %/dsr[Bl (%)2+Bz (%‘5)2

9\’ By Ay
+B; ('52) +2Bag 5|, (1)

where the integration is carried out over the volume of
the film and the B coefficients are elastic constants. The
system is stable if B; > 0 (i = 1,2,3) and BZ; < B;Bs.
To make a connection to the well-known elastic constants
K;;, we can use n(yp) = (sinf cos ¢, sinfsin p, cosf) in
the Frank energy expression

Ku(V . n)2 + Kzz[n . (V X n)]z + K33(nXV X n)2 (2)

and rewrite it in terms of ¢, giving the relations [15]
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B, = (Kzz cos 20 + K3 sin20) sin 26,

B; = K, sin 26,

B3 = (K33 cos 20 + K3 sin 20) sin 26, (3)
B3 = (K33 — K33)sin30 cos 6.

Equations (3) automatically guarantee stability of the
system and show how the elastic constants depend on 4.
These expressions are consistent with a qualitative state-
ment made by Carlsson et al. [16], according to which
B; (i = 1,2,3) are even in 0, while B3 is odd in 6. All
these coefficients must vanish with vanishing §. It is clear
that Bjs is negligible compared to the others if 8 is small.
This happens, for example, in the vicinity of the transi-
tion to the smectic-A phase. By contrast, deep in the
smectic-C' phase all the elastic constants have the same
order of magnitude.

To obtain the correlation function in the reciprocal
space representation for an infinite sample, one can take
the Fourier transform over all space and then apply the
equipartition theorem. Clearly, a more complicated anal-
ysis is required in the case of a bounded system, since
boundary conditions must then be taken into account.
We shall follow two approaches to the problem. Of these,
the first, based on a description in terms of the natu-
ral modes, although a plausible formulation, leads to a
somewhat intractable formula. The second gives the cor-
relation function in a form that is easier to analyze and
is computationally more efficient.

A. Description in terms of natural modes

The idea of this approach is to find a full series of or-
thogonal functions (natural modes), providing a basis in
which the free energy takes a diagonal form, and then to
apply the equipartition theorem. In order to find such a
series, we take a Fourier transform over the zy coordi-
nates and rewrite the free energy using the new variable
P(qL,z) = exp(tb13g-2)p(qL,2). After integrating by
parts we arrive at

F 33 dz L/2 .
- [ Pl [, @0

H? ~
X [—52‘5 + (bl - bf:,)q: + bgq;] So(q'L’z) (4)

L/2

nb

where b1 = BI/BS, b2 = Bz/B3, and b13 = Bls/B;;.
A fundamental condition that must be satisfied in order
that arbitrary ¢ can be expanded into a full series of
eigenfunctions is that the operator —8%/822 should be
self-adjoint. This property is determined from the choice
of boundary conditions. In line with [17], in which fluc-

tuations in a homeotropically aligned nematic cell are
considered, we choose

- a .
+¢ (QL,Z)E‘P(QJJZ)

%J)(q_]_,z =+L/2) =0. (5)
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The free energy under such boundary conditions in this
basis takes a diagonal quadratic form. The eigenvalues
of the operator are A\g = 0, A, = (7n/L)? (n = 1,2,...)
with eigenfunctions

(6)

+ (—=1)" exp (—ernz/L)].

o L
<P()(z) - \/f’

1
Pn(2) = V2L

Now, arbitrary fluctuations can be expanded in a full
series of eigenfunctions

[exp (¢7nz/L)

oo

e(ay, z,t) = exp(—thisgs2) Y ™ (AL, )gn(z). (7)

n=0

Let us consider dynamical properties of the system.
We adopt the simplest feasible dynamical model, ne-
glecting coupling between the director and hydrodynamic
flow. In this approximation the coefficients in Eq. (7)
must satisfy the equations

8 n n
Yg5e™(@L,8) = T (qu, 1) (®)

with -~ béing a viscosity coefficient and
B
) = —f [(by — b35)q2 + bagl + An] - (9)

The correlation function

G(q_l_,z,z',t) = (‘P(q»vavt)ﬁo*(qJ-vzl’O» (10)

can be written as

oo

Glat,2,7,t) = 3 exp [thia(2' — 2)a — T Jt]

x(c™(q1,0)c™* (a1, 0)) @ (2)En(2"),
(11)

where the single time correlation coefficients are given by

n n)x kT
(C( )(qJ-vO)C( ) (q-L70)> = ,YI‘('n) (12)

In the (q.,z,2',w) representation, which is convenient
from the light scattering perspective, we have

, 2kpT & 1 .
G(qy,z,2,w) = ’Y E : w? + ()2 Pn(2)Pn(2")
n=0
x exp [tbyz (2’ — 2)]. (13)

In the limit of L = 0 only the main mode with n = 0
contributes to Eq. (13). As one can see from Eq. (9), that
contribution corresponds to the Goldstone mode of a pure
two-dimensional system described by the two effective
elastic coefficients B; — B?;/B3 and B,.

It is worth mentioning that a similar description is
used by Sprunt et al. [7], but there is some difference.
First, these authors implicitly assume that the free en-
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ergy takes a diagonal quadratic form in the basis of func-
tions exp(enz/L) (n = 0,+1,+2,...). Here we do not
make this assumption, developing our argument instead
from a full set of orthogonal functions that follows di-
rectly from the free energy expression. Second, they
truncate the summation over the natural modes by the
number of the layers in the film. Such a cutoff is rea-
sonable, because length scales less than the order of the
layer spacing are beyond the focus of such a model.

The same truncation scheme is used by Poniewierski
to study layer undulations [18]. Unfortunately, it leads
to nonphysical oscillations in the dependence of the cor-
relation function on z and z’, which turns out to be quite
large for films that are only a few layers thick.

We prefer to keep the tail of the sum because it ensures
smooth dependence across the film. In the opposite limit
of an infinite sample the distance between neighboring A,
tends to zero (i.e., the spectrum of the operator —8% /922
becomes continuous) and all modes must be taken into
account.

B. Resolvent function and response function

Rather than carry out the summation in Eq. (13), we
adopt in this section an alternative approach that af-
fords a compact analytical expression for the correlation
function. Another goal of this section is to derive a re-
sponse function that describes the reaction of our system
to an external action. In accordance with the fluctuation-
dissipation theorem, the correlation function of an infi-
nite system must be equal to the imaginary part of the
response function multiplied by 2kpT/w. We will show
that this statement is in fact also valid for our bounded
system, where surface conditions play an essential role.

If an external field h(r,t) acts on the film, then ¢(r,¢),
according to the our choice of dynamical model, obeys

dp(r,t)  6F +
ot  Sp(r,t)

h(r,t), (14)

with the boundary conditions of Eq. (5), which, in terms
of ¢, are

7]
(5; + zblgqx) p(ry,£L/2,t) = 0. (15)

A solution to Eq. (14) in the (q., 2,w) representation is

L/2
(P(qJ_,Z,UJ) = / dZ’R)\(Z,Z’)h(qL,Z,,UJ), (16)
—L/2

where the response function R is a solution to the equa-
tion

B; [_ (E)% + zblsqm) - /\] Ra(z,2") = 8(2 - 2") (17)

with A dependent on q; and w:

24
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Equation (17) does not uniquely define the response func-
tion. The correct form of Rj in Eq. (16) must give ¢ sat-
isfying boundary conditions Eq. (15). Using ¢ instead
of ¢ again reduces the problem to a solved one (see, for
example, Ref. [12]). Equation (17) can also be solved
as follows. For z # 2/, the differential equation (17) is
homogeneous and can be readily solved. By joining the
solutions for the regions z > 2’ and z < 2/, taking into
the account the boundary conditions Eq. (15), we obtain

i e v Gl Ve )

+ cosh [\[——X([z—z’| —L)]}. (19)

Ry(z,2")

Equation (19), together with Eq. (16), allows one to find
the response function.

Another consequence of Eq. (19) is that the single time
correlation function can be written as

G(qi,2,2',0) = kBTR,\(ql,O)(z,z'). (20)

According to the dynamical model chosen here, the two-
time correlation function G(q_, 2, 2’,t) must satisfy the
equation

V%G(qL’%zI’t)
P 2
= —B3 [(bl — b13)a3 + bag) — (5 + 1b13¢1z> ]
xG(qy,z,2,t). (21)

Taking the half Fourier transform
oo
G (qy,z 7 w) = / dte*tG(qu, 2,2, t),
0

we obtain

2
Bs [_ (% + zb13qrc) - ’\(ql,“’)] GM(au, 2,7, w)

= ’)’G(QL, z, zl’ 0) (22)

The solution to Eq. (22) can also be expressed through
the resolution function

G(+) (qJ_7zy Z,,(-U) = kBT’Y (ﬁk(qJ_,w) * ﬁ)(q; ,0)) (Z?ZI)'
(23)

For the full Fourier transform we have

G(qi,z 2 ,w) =GP (qy,z 2 ,w) + GH)(qL, 2, z,w).
(24)
Using the following property of resolvent functions of self-
adjoint operators [19]:

. 1 -~
. = ——(R,—R,),
Fou o = gy e 1)
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we get the usual relation [11] between the correlation and
response functions

2kpT

G(qi,2,7,w) = ImR)(q, w)(2,2"). (25)
The pair of expressions (19) and (25) is more computa-
tionally efficient than Eq. (13). In the limit L — co it
gives, as expected, the known result (see, for example,
[6]) for the infinite sample and in the limit of L = 0 it
reduces to the contribution of the Goldstone mode men-
tioned in the previous Sec. IT A.

III. LIGHT SCATTERING

It has been shown by Galerne et al. [2] that the fluctua-
tions of the dielectric tensor that are associated with the
c director give the main contribution to the light scat-
tering intensity. Leaving aside scattering from the layers
undulations, considered in detail in [12], and a contribu-
tion from fluctuations of the tilt angle, we can assume

8nﬂ (0)

d€ap = €4 [na(O)—gq)— + nB(O)a—ng-(ﬂ)—

90 } e, (26)

where €, is the optical anisotropy of the smectic liquid
crystal. The intensity of the scattered light in the Born
approximation is given by

I(e(i), e(s), q, w) ~ VEZf(e(i), e(s))g(q, w). (27)

Here V is illuminated volume. The geometric factor f is
defined as

f(e®,e) = {e[na(0)8,n5(0)
+n5(0)dpna(0)]eS}?, (28)

where e(® and e(®) are unit polarization vectors of in-
cident and scattered light. The scattering vector q has
components (q,,¢,), w is a frequency shift, and we define

Lk L/2
g9(q,w) = —/ dz/ dz' exp [—1g.(z — 2')]
LJ_r) ~L/2

xG(qy,z,2,w). (29)

A prefactor dependent on the intensity of the incident
light and its wavelength has been dropped in Eq. (27) for
brevity. We have also neglected the difference in wave-
length of ordinary and extraordinary waves, reflection
and refraction at the interfaces. These optical corrections
are beyond the scope of this paper and are considered in
detail elsewhere [12].

As an example of application of the formula, let us
consider the geometry in which the incidence plane co-
incides with the tilt plane, incident light is polarized
perpendicular to it, but the polarization vector of the
scattered light lies in it. The components of the in-
cident and scattered wave vectors can be written as
k) = ko(sinb;,0,cos8;), and k(®) = ko(sinb,,0,cosb,),
where kg is the wave number of the incident light. Here
0;,0, are the angles between the z axis and, respec-
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tively, the wave vectors of the incident and scattered
waves. The components of the scattering vector are now
q = ko(sinf, — sinb;,0,cos 0, — cosB;). This geometry
yields f(e(®),e(®) = sin® §sin?(0, — ).

Expanding the correlation function into a full series of
natural modes, Eq. (29) becomes

9(q,w)

,YLZ w? + )2 (q: + 513(1;:)2
+ i 1 sin[(7n/L — q, — by3q.)L/2]
“—~ w2+ T2 /L — q. — b13qs

sin [(7n/L + q. + b13g.)L/2] ?
m™/L + q. + b13gs ] } (30)

. 4kBT{ 2 sin? [(g, + b1ag=)L/2]

+(=1)"

Integration over z and 2’ in Eq. (29) can be carried out
using Eq. (25). We thus obtain the more compact ex-
pression

(@,w) = 25T | 1
SV = ByLw " V—Asinh(V-AL) [(¢, + brads)® — |

X { v/—=ALsinh(V=AL)

2(qz + b13q:c)2
(Qz + bl3qz)2 - A

x [cosh(\/——/\L) — cos((g; + blsqz)L]] }

(31)

where A = A(q_,w) is defined by Eq. (18).
Equation (31) allows one to take the limits L — oo
and L = 0

y
P, 9(ae)

_ 2kgT 1
Y w?+ [Big? + Bag? + Bag? + 2B13gad:]” /72
(32)
lim g(q,w)
_ 2kgT 1 (33)

Y w?+ [(By — B%/Bs)¢? + Byg?]’ /7?

The first limit (see also Ref. [20]) corresponds to the
statement that in an infinite sample the intensity is pro-
portional to the correlation function in the (q,w) repre-
sentation. The latter can be derived directly from Eq. (1)
by taking the appropriate Fourier transform and using
the equipartition theorem. A comparison of these two
limits shows that the half-widths of the curves differ from
each other considerably. It should be emphasized that in
order to get the half-width in the case of a very thin film
it is not sufficient simply to set g, = 0 in the expression
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for an infinite sample. Rather, the corresponding expres-
sion for a thin film should be obtained by choosing g,
such that the denominator of Eq. (32) is minimized. One
sees that B;q2 + quz + B3q? +2B;3q.q; for fixed g, and
@y is minimal if ¢, = —b;3q,, the minimum being equal to
(B1 — B?3/Bs)q2 + Bzq2. This value also can be written
as 4T where I'(®),| defined be Eq. (9), is the relaxation
rate of the main mode. For thin films, this mode is the
only one that needs to be taken into account.

Thin films can be considered on the basis of the two-
dimensional (2D) formulation [21] according to which ¢
is uniform across the film and the elastic energy per unit
area is given by 1[KZ(8,¢)? + K°5(8y¢)?|, where KB
and K° are the bend and splay elastic constants of the
c director. The relaxation rate I' measured is given by
(KBqZ+K%q2)/n [21], where n is the 2D viscosity. These
two formulations give the same relaxation rate provided
that n = L+ and

K® = LB,,
KB = L(B, — B%,/B3).

(34)

In fact, these 2D effective constants depend on bulk elas-
tic constants as well as boundary conditions. In the case
of the free-standing film, they are given by (34). Equa-
tions (3) allow one to express them in terms of 6 and
the Frank constants.

A useful quantity is the anisotropy K5/KZ. It does
not depend on an absolute measurements of the elasticity
and can be obtained from light scattering experiments.
Using Egs. (3) in Egs. (34) we obtain

K5 K Ky .
—K—Bz K—::cosZ€+ —1 sin20.

Ko (35)

IV. CONCLUSION

The fluctuations of the ¢ director in free-standing smec-
tic films have been studied theoretically. The films have
been modeled using elastic theory for smectic-C liquid
crystals. In studying the dynamical behavior of the fluc-
tuations, we have chosen the simplest feasible hydrody-
namical model. The correlation analysis has been carried
out both in terms of the natural modes of the system and
in terms of the response function. The latter gives com-
pact analytical expressions and can be easily extended to
the case of a film on a substrate or a cell. It has been
shown that the correlation and response functions for a
film in the (q., 2, 2’,w) representation obey the same re-
lation as those for an infinite sample in the (q,w) rep-
resentation. In fact, this statement can be generalized
to the case of arbitrary boundary conditions. The ex-
pressions derived show how the three-dimensional system
evolves into a two-dimensional one with diminishing film
thickness. We have established that the two-dimensional
elastic model cannot be derived simply by assuming that
the fluctuations in a thin film are uniform across the film.
Instead, the two-dimensional model should be properly
derived from the three-dimensional one by minimizing
the free energy over all possible dependence across the
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film. A signature of this result is that B,3 features in the
effective two-dimensional bend elastic coefficient (34).

The elastic anisotropy is given in Eq. (35). Such a de-
pendence of the elastic anisotropy on the tilt angle can
be checked in light scattering experiments. Section III
presents a complete set of expressions requisite for inter-
pretation of experimental data. Equation (31) takes into
account contributions from all the natural modes and
allows one to analyze the frequency spectrum of the in-
elastic scattering. By adding a term —x,H? cos?(6)/Bs
to the right-hand side of Eq. (18), the effect of an align-
ing magnetic field H applied along the z axis could be
accommodated.

The dynamical model chosen in this paper does not
take into account the influence of mass flow on the reori-
entation of the c director. There is evidence from numer-
ical calculations [22] that this effect [23] is not negligible.
In the case of hard boundary conditions it gives rise to
the so-called backflow speeding up switching effect. A
similar effect can be found in homeotropically aligned
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cells [24]. It has been pointed out [24] that the coupling
of the director with mass flow prevents one from describ-
ing the dynamical processes in terms of the stationary
natural modes of the director. This is because the mass
flow field and the director must satisfy different bound-
ary conditions. One suspects such coupling will depend
strongly on the boundary conditions. A precise analysis
of these dynamical effects in the case of a free-standing
film is beyond the scope of this paper. We defer it as the
possible subject of a separate study.
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